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AIRFOIL OPTIMIZATION BY THE METHOD OF INVERSE BOUNDARY-VALUE PROBLEMS* 

A.M. ELIZAROV and E.V. FEDOROV 

Some variational problems on the shape of impermeable wing sections that 
ensure maximum lift, minimum drag, and maximum aerodynamic quality for a 
given perimeter and one fixed-angle trailing edge in a non-separating 
plane steady incompressible viscous flow at high Reynolds numbers are 
formulated and solved. Functionals are constructed whose minimization is 
equivalent to the optimization of these characteristics. The existence 
and uniqueness of extremum points is analysed. Examples of optimized 
wing sections are given. The variational problems are solved, following 
/l/, by constructing an operator that acts on the functions of a given 
set, where each function corresponds to the object required with the 
necessary properties (in our case, a single-foil section bounded by a 
closed piecewise-Lyapunov contour). 

One of the approaches to airfoil optimization is by solving the direct boundary-value 
problems of aerodynamics. A multiparameter family of contours of a certain type is defined 
as alternatives for the modification of the initial contour. The aerodynamic characteristics 
are calculated for each wing section, and they are optimized by selecting the values of the 
free parameters subject to constraints that express the conditions of physical and con- 
structive realizability of the mathematical solution (see, e.g., /2, Sect.6/). This approach 
enables us to allow automatically for changes in the values of side parameters by including 
them in the system of problem constraints and produces the optimal wing section in a special 
class, which requires special techniques for modifying the initial contour. 

A different approach to airfoil optimization relies on the theory of inverse 
boundary-value problems (IBVPs) for analytical functions /3-S/, which can be used to solve 
the problem of constructing wing sections and their grids in an incompressible fluid, in 
subsonic gas flow, and in a viscous fluid at high Reynolds numbers. The basic IBVP of 
aerohydrodynamics, which has been studied in maximum detail for the case of an ideal 
incompressible fluid /3, 61, involves finding the shape of an impermeable wing section qiven 
the flow velocity distribution u (8) along its contour (s is the arc abscissa) for a known 
unperturbed flow velocity u,_ If the function ~(8) is integrable, this problem is uniquely 
solvable in the class of Smirnov domains (see, e.g., 17, p.250/) and its solution has an 
integral representation associated with the conformal mapping of the domain E-= (c:f 51 >i) 
on the exterior of the required wing section. For various u (8) this representation exhausts 
the class of Smirnov domains, which is very large and contains domains with rectifiable bound- 
aries (the smoothness of the boundary curves is ensured by additional constraints on V(S)). 

One of the techniques of airfoil optimization by solving IBVPs involves the optimal 
choice of U(S). For the design of high-lift airfoils, this approach has been implemented by 
a number of authors (see the bibliography in /8/) by the optimal choice of the parameters of 
the initial multiparameter family U(S), constructed taking into account the conditions of 
hydrodynamic convenience. However, an arbitrary velocity distribution may correspond to a 
section bounded by a open contour, which represents a physically unrealizable solution. There- 
fore the basic IBVP of aerohydrodynamics is ill-posed, and its solution in the required class 
has to be obtained by regularization methods (see /9/), which limits the applicability of this 
technique. 

An alternative technique of optimization by IBVP methods, developed in this paper, relies 
on Lavrent'ev's idea of specifying the set of feasible solutions as the images of some set of 
functions under the action of a special operator. This idea has been used /l/ to solve the 
variational problem of the maximum-lift arc of a given length and bounded curvature in the 
flow of a smoothly ideal incompressible fluid. In this paper, we apply this idea to develop 
a set of wing sections bounded by Lyapunov arcs. The corresponding operator is based on the 
integral representation of the basic IBVP of aerohydrodynamics and the optimizing character- 
istics are expressed as functionals on the set of functions that satisfy the conditions for 
the IBVP to be solvable and a general non-separation criterion. The functionals are minimized 
numerically. Some problems of the existence and uniqueness of the solution of the maximum- 
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lift airfoil problem are explored. 
Note that the problem of airfoil optimization subject to constraints that prevent flow 

separation from most of the wing was previously considered in /l/. The numerical solution of 
this problem /lo/ uses a constraint on the pressure gradient as a simplified form of the non- 
separation condition. 

1. Statement of the variational problems. An impermeable wing section bounded by a 
closed contour LL of length L is immersed in an unbounded plane steady incompressible viscous 
flow at high Reynolds numbers. The flow velocity at infinity is parallel to the abscissa 
axis in the given coordinate system; its value L‘, and the fluid density p are known. 

We start by defining the class of contours L,. The contours LI are images of the unit 
circle under conformal mappings z=z(Q, 5EE-,z(cK)=cQ, which have the representation 

z' (5) = (1 - <-I)'-'z,' (<), 5 &E-z 1 < E < 2, ~0' (j) # 0 

and the limiting values 

In 12”’ (e”@)I = a,, + p (O), a, = const 

exist. We assume that the function p(0) satisfies the Holder condition H (A&) with con- 
stants O< K,< CIS and O<n,<l, and 

J” (p) EC 2f p (0) d0 = 0 (1.1) 
0 

Taking an arbitrary function p (0) that satisfies these conditions, we reconstruct 

ln s' (5) by the Schwarz operator with the density g(O) = a, +p(B) + h(O), where h (6) = (E - 
1)ln [2 sin (O/Z)], and thus obtain 

(1.2) 

where a is a constant that characterizes the attitude of the sections bounded by I,, relative 
to the incident flow. Taking the boundary-values for 5 = &' in (1.2), we obtain a parametric 
equation of the piecewise-Lyapunov contour L, which has at most one trailing edge at the 

point z = 0 with a fixed angle en. I< E < 2, interior to the flow region. As in /3, 6/, 
the contour L: is closed only if 

I,(p)+i~,(p)~-~p(8)e~~dB-~((e-*)=0 (1.3) 

II 

Therefore, (1.1) and (1.3) are necessary conditions for obtaining & from the given 
class. 

Since a is arbitrary, the contours L,are defined, apart from rotation around the origin. 
Conversely, for any region bounded by a piecewise-Lyapunov contour of this type (we stress 
that all contours of this type pass through the point z=O and have a trailing edge at 
this point for s>f), the conformal mapping z(c) by our choice of normalisation(z(oo)= CO, 

2. (1) = 0) has the form (l-2), and a takes a well-defined value /7/. Taking L, as given, 
apart from rotation around the origin, we can find the desired value of a. The operator 
(1.2) thus describes a large class of sections from the set of sections with piecewise-smooth 

boundaries. 
Note that a in (1.2) has a well-defined physical meaning: it characterizes the 

deviation of the wing section from the zero-lift flow direction. In what follows we assume 
that a>0 (this condition corresponds to positive lift) and consider two cases separately, 
when a is fixed or varies in the range [O,n/2]. The first case corresponds to a supplementary 
constraint on the angle:of attack of the required section. 

It is required to determine the airfoil from a given class of shapes such that, without 
flow separation, it has highest lift (problem l), least drag (problem 21, or maximum aero- 
dynamic quality (problem 3). 

2. Non-separation conditions. For steady viscous flow past wing sections at high 
Reynolds numbers, the typical flow scheme includes a thin boundary layer and a wake. In order 
to calculate this flow, we consider a model external potential flow past a semi-infinite dis- 
placement body, which differs from the original section by its small displacement thickness 

6* and extends into the wake in the form of a thin strip. The velocity distribution on the 
semibody contour matches the velocity distribution on the wing section contour. Since A* is 
small on the wing section and in the wake, the external flow is approximately identified with 
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the potential flow of an ideal fluid past the given section. The non-separation condition 
has the form /ll/ 

(-1)' 10 (s)l-lu' (s)6** (s) < F (R**), R** = u (s)6** (s)/Y (2.1) 

v is the coefficient of kinematic viscosity, A*' (s) is the momentum loss thickness, F (R**) 

is a function that depends on the flow regime, j=l for the top surface of the wing section, 
and j = 2. for the bottom surface. In particular F(R**)= p,/R** or a laminar boundary 
layer and F (R**) = p2 or 

F(R**) = p3R**-M (2.2) 

for a turbulent boundary layer, where ul, nz, pL3, and m are known empirical constants. From 
the momentum equation for a turbulent boundary layer (see, e.g., /4, p.398/), we obtain 

6** (s) zzz A # f(s) R**-l’m, f(s) = (2.3) 

a = (m $-1)/m, b = 2 (4m + 1)/(2m - 1) 

where A =A (m) is a constant that depends on the choice of m /4/, and s1 is the arc 
abscissa of the flow branching point. Taking the function F in (2.1) in the form (2.2) and 
using (2.3), we obtain the following non-separation criterion for the turbulent boundary layer 
(see also /9/): 

f (s) 2 f*, f,c > fo = -pJA (2.4) 

where a = 1.25, b = 4.85, and f. = -5.57 . . . -4.77 according to Prandtl-Buri,o = 1.17, b = 4.55, 
and f. = -3 . . .- 2 according to Loitsyanskii, and a = 1, b = 4, and f. = -0.8... -0.7 accord- 
ing to Bam-Zelikovich. Note that (2.4) also gives the non-separation condition by the Kochin- 
Loitsyanskii method /12, Sect.1281, and a = 1.17, b = 4.75, f. = 4 
-0.0681 for turbulent and laminar bounary layer, respectively. 

and a = 0.45, b = 5.35, f. = 

3. Lift nlrlximiaation. !t’he existence and uniqueness of the sotution. According to the 
Zhukovskii-Chaplygin conjecture for 
flow roils off the wing section, 

1 <.s < 2, the trailing edge is the point where the 
and the action on the flow on the wing section produces a 

lift p = pu,p, where p is the velocity circulation. For e = 1, the contour is smooth, 
and in order to determine r we will agree that the flow rolls off the wing section at the 
point z (1). Note that the functions z(c) establish a correspondence between the flows past 
the required airfoils and the flow past the unit circle. For the circle, the angle of attack 
is OL and the flow rolls at the point 5 = 1. 

Let w(z) be the complex flow potentials in the domains D_ that contain cc and are 
bounded by the contours i,. The 
the point at infinity, where they 
neighbourhood of 00, 

For fixed values of p,v,, s, 
ational IBVP: find the region D, 
and a function w(z) of the form 

I &a4 llLz, and the conditions 

functions 
-1 

w (z) are analytical in D, everywhere except 
have a simple pole and a logarithmic singularity. In the 

w(z) = u,z + &I z + J? C@ 
kti 

(3.1) 

and a, problem 1 is equivalent to the following vari- 
bounded by the contour L, from the class described above 
(3.1) analytical in D, which satisfies (2.41, where u(s)= 

Im w (z) 14 = 0, Q, = 15 fdw/dz)a dz I- max 

Lz 

The first relationship in (3.2) is the impermeability condition for L,, and the second 
relationship is equivalent to lift maximization, because by Zhukovskii's theorem 

Q, = ~u,I? = 2Plp = ~IW,’ 1 Z’ (co) 1 sin a (3.3) 

Let us reduce the variational IBVP to a variational problem. From the condition defining 
the perimeter L, we obtain the equality 

expa, = zl+- L 1 J(p)= 3 
J(P) 

sinE-11/,8 exp p(8)d8 
0 
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By (1.2) we have [z’(m) 1 = expa,, and therefore by (3.3) and (3.4) maximization of P 
requires minimization of the functional J(p) on feasible functions from the set 

u = tp (0) E H (K,, A): J,(P) = 0, J, (p) t i/,(p) = o) (3.5) 

which additionally satisfy (2.4). 
Let us investigate the general properties of J(p). 

Theorem 1. The functional J(p) is strictly convex on the convex compact set u CL, [O, 
23x1 and the problem of minimizing J(p) on U is therefore uniquely solvable. 

Since J(p)=f?(U), then for the strict convexity of J(p) it is necessary and suf- 
ficient that ((Jp")g, E> > 0 f or all O+ EEL, [O, 2nJ. p E U, where ((Jp")&E) is the value 
of the linear functional (Jp")(E) on the element E. We have 

<(l"p)E,E)='f sin-11!,0[2(8)exp ~(t3)dB>O 
0 

The set U is obviously convex and bounded in the space of Hglder functions. Therefore, 
U is convex and compact L,[O,2nJ. 

Consider the problem of minimizing J(p) in the linear subspace U, c L, 10,2nJ defined 
by (1.1) and (1.3). Direct application of the Lagrange multiplier method proves the following 
theorem. 

Theorem 2. The functional J(p) attains its global minimum on U, at the point 
- (e - 1) In (2 sin '/,fl). 

P* (0) = 

For e = 1, the function p,(8)= 0 E U, J(p,) = 2n, g(8) = In lLi(2n)J and maximum lift is 
attained for flow past a circle of radius Li(2n). 

Let l<e,<2. Then p,(8)@ U and the initial problem is equivalent to the best approxi- 
mation in L,[O, 2n] of the function p* by the set U. 

Theorem 3. The only best approximation in L,[O, 2~1 of the function p*(O) on the set 
U, for some K, = K, (n) is the n-th segment S,p, of the Fourier series of the function 

P* (0) in the trigonometric system ((Pi}. In this case, we have the following bounds which 
are unimprovable in order of magnitude: 

II P* (0) - (s,P,) (0) lib,* G CH, (P,, A) n-(9 I 2 h > 6 > 0 

C = C (p,, A) = censt, q = 2. II . 1lo.a = II . lkR + H, (., 6) 
~$3 0-6 II P* (0 + t) - P* (0) h,h 0 < 6 < 1 

Hg (p*> ‘) = ~2; (t-1 II P* (0 + t) - 47* (0) + P* (0 - q II~,,), 6 = I 

(3.6) 

Proof. Consider the set of trigonometric sums cl'pl + . + c,(p,, ck = const, which is 
everywhere dense in U. We know (see, e.g., /13/J that S,p, is the only best approximation 

in L,[O,&] of the function p,(8) by linear combinations of this kind. Clearly, S,p,='lJ 
for some K,. The deviation II S,p,- p*Ijr,, can be estimated, say, by approximation in H-spaces 

/14/. In particular, the BanSch space H,b, 1 <q < co, 0 < 6 Q 1, with the norm II . lhq con- 

sists of functions r(tl)E L, that satisfy the condition H,(r,6)< co. By the membership 
criterion in H,b from /14/, POE H,*. The bound (3.6) now follows directly from Theorem 
3 in /14/. 

The function S,p, thus solves the problem on the set U for some K, = K,(n); the wing 
section corresponding to S,p, has a trailing edge with the angle ex. From stability 
theorems for IBVP solutions /5/ it follows that as n+m this wing section approaches a 
circle without limit. Thus, our results augment and develop the results of /lo/. 

Additional restrictions can be imposed on (I, guaranteeing simplicity and a certain geo- 
metrical structure of L,. These restrictions are expressed in the form of the sufficient 
single-foil conditions of /15/, which impose constraints on K, and restrict U. The set U 
constructed in this way is treated as the set where the problem is well-posed, and the search 
for the best approximation to p,(e) on this set is equivalent to finding a quasisolution 
of the problem. Replacing the function p,(e) by its best approximation S,p,, we obtain a 
problem which is equivalent to finding a quasisolution of the external IBVP in U /lb/. 

Let us now express the criterion (2.4) in terms of the function p(O). We can show that 
condition (2.4) holds everywhere on L, for e = 2. In what follows, we consider this specific 

case. 
The complex potential of a flow past a circle has the form 

[U(5) = r(2n)-' [(5e-ia + e'"/c) (2sin a)-'- i In 5 + z + 2a + ctga] 

From (3.7) and (3.1) we obtain 

(3.7) 



v [S (El)] = J? 03s (‘i2tl - a) exp [--co - p (0)ll(Zn sin a) (3.8) 

where v 1s (e)l > 0 for 0~8~ z + 2o (on the top surface of the section), u[s(8)1< 0 for 
n+2a<e<2n (on the bottom surface). By (3.8), assuming piecewise smoothness of P (eb 
we obtain 

-$ ln 1 u ls (e)j 1 = G, tp; e) = - p’ (e) -1;2 tg (v2e - 4 

Therefore, the non-separation criterion (2.4) expressed in terms of P (0) takes the 
form 

(-WI (P; 0) 2 f,p, (ZJ; eh foj 2 fov i = 1, 2 
e E 10, n + 2.~1 for j = 1, 8 E tn + 2a, 2~1 for j = 2 

c,(p;e)=c,(P;e)!.~~~~G,(P:e)de~~l 

13, (p; e) = sin v,e 1 cos (v,e - CL) lb-l exp [(2 - b) p (e)l 

(3.9) 

The problem of minimizing the functional J(p) on the set U,(U with the supplementary 
constraints (3.9)) was solved numerically by the relaxation method (see, e.g., /17/). 

Fig.1 shows the optimal sections obtained for a= O.lS(S.6") and a = 0.2 (Il.50) (contours I 
and 2), and also the corresponding velocity distributions (curves 3 and 4) (the coordinate 
system zy was chosen so that the airfoil chord lies on the axis x and the leading edge 
coincides with the origin). The constants a, b, and fO in (2.4) were selected by the Kochin- 
Loitsyanskii method for a turbulent boundary layer. The dimensionless arc coordinate was 
related to the perimeter L, the dimensionless velocity " (8) was related to the given value 

"-7 and the contour coordinates were related to the airfoil chord C. The section I has a 
lift coefficient C,= 1.152 for angle of attack 6=7.7* and relative thickness t = KM; for 
section 2, C, = 1.502, p= 10.7', and t=0.252. 

The constraint (3.9) is very complicated and, in particular, the question of the con- 
vexity of U, remains open. As simplified non-separation conditions, we can use constraints 
that define some approximation of the set U,. The simplest constraints are the inequalities 

(-l)jGl (p; 0) > -dj, j = 1, 2 (3.10) 

where d,,d,> 0 are constants. Note that for dj = 0 relationships (3.10) give the necessary 
and sufficient conditions of monotonicity of the function v (s) on the corresponding airfoil 
surfaces and are therefore exact if we seek a solution with a monotone velocity distribution. 
The constraints (3.10) conserve the convexity of the feasible set (we denote it by U,) and 
guarantee the existence and uniqueness of the minimum point of the functional J(p) on U,. 

1 D.5 .I u 0.5 
Fig.1 Fig.2 

Let us describe the selection of d, and &. Fixing d,= 0 and solving the minimization 
problem for J(p) on the set U, for various d,, we find the maximum possible value dm,, 

for which the solution of the optimization problem satisfies condition (3.9). For any 



478 

4 < %NY we obviously cannot obtain an extremal value of J (P) which is less than that for 

d, = &,,,,. Let 4,, = zq, where 1> 1 are integers and 9 is a sufficiently small constant. 

For each d, = d,,, we find the corresponding dn,,,, by the same technique. We continue in- 

creasing dz as long as dlmoy exists. We thus obtain a set of pairs (d,. d,), such that the 

minimum of J(p) for each pair belongs to the non-empty intersection of P1 and U,. The least 
of the extremum values of J(~) calculated for all pairs is the required solution. A numerical 
experiment has shown that as d, is increased, the corresponding dtms, decreases. 

As n is reduced, the proposed algorithm produces the best approximation of the set U, 
by the sets ll? in the neighbourhood of the extremum point. The implementation of this 
algorithm involves solving a fairly large number of optimization problems, but at each step 
the convexity of U, and the strict convexity of J(p) guarantee the existence and uniqueness 
of the extremal function. 

Calculations show that this approximation is exact if we seek an airfoil with a monotone 
velocity distribution on one of the surface (i.e., ioj = O or dj=O for j='l or2).The 
results obtained in the general case and for the approximation (3.10) were virtually identical. 

Fig.2 shows the optimal sections with a monotone distribution of U (I) on the bottom 
surface, constructed for CL= 0.1 (contour I) and a= 0.2 (contour 2) for the same values of 
a, b, and f. as in the previous example. Section 1 has c,= 0.666 for an angle of attack 
p := 7.6' and its relative thickness is t = 0.157. for section 2, C, = 1.448 for 6 = 9.6' and I = 0.221. 
The corresponding I,(S) distributions are shown by broken curves 3 and 4. 

Let us consider the case when a is not fixed. By (3.3) and (3.4), lift maximization 
requires minimizing the functional JO(p,) r-J (p)lsina. on the set of feasible solutinsp, =(p, 
a)* where pi .?I, and a E IO, n/21. A computational experiment has established that the 
minimum value of J(p) increases as a increases, but much more slowly than sina. We there- 
fore need to find the maximum a for which the feasible set is non-empty. 

Calculations show that as e increases, the optimal wing sections without flow separation 
become non-single-foil. The maximum cc corresponding to a single-foil section for j,, = -6 
was found to be 0.28. Fig.3 shows this section and the corresponding u (s) distribution. 
The wing section has C, = Z.Ol'i for fi = 12.8 and its relative thickness is t =0.2.X. 

2 
I ~/k-VI Fig.4 

4. Drag minimization. In cases without flow separ- 
ation, the drag coefficient C,X may be calculated from the 
Squire-Young formula /12, p. 691/ 

/ - C, = :! 1 u,/u. p’? c-1&#** (4.1) 

where tiO = u(1) and 6,** is the total momentum loss 
thickness at the trailing edge. Using relationships (2.3) 
and (3.8), we obtain from (4.1) 

S/L 

D R 5 I 

Fig.3 

C, z 2=(2Aa) ni/(r,,+l, I, cRe-'/(t"+l'~(p) 

D(p) =z D(p) [J (p)]-irihW, Re z + 

The problem of drag minimization (Sect.2) is thus equivalent to minimizing the functional 
D (P) on the set U,. This problem was solved numerically for a fixed a. Note that the 
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functional D(p) in general is not strictly convex, and therefore the optimization process 
may produce local minima. 

Fig.4 shows single-foil minimum-drag sections constructed for OL= 0.1 (contour I) and 

cz = 0.2 (contour 2) for Re= 2x 106. Section 1 has t = 0.07 and C, = O.O117,C, = 0.655 for b = 
2.46" ; for section 2, t = 0.127, .C, = 0.0174 and C, = 1.383 for fl = 6.67". For comparison, note 
that for sections 1 and 2 in Fig.2 we have c, = 0.0153 and C, = 0.0216 respectively for the 
values of (3 given above. 

A computational experiment has shown that C, decreases as U-+0 for the optimized 
sections, and the sections themselves become thinner, approaching a plate immersed in a flow 
at zero angle of attack. 

5. kuimization of aerodynamic quality. From the results of Sections 2 and 4 it follows 
that maximization of K = C,IC, is equivalent to minimization of the functional E(p) = E (P) 

IJ (p)li'('"+~) = D (p) J (p) on U, . Calculations show that the behaviour of this functional is 
very close to that of D (p). This obviously explains why the maximum aerodynamic quality 
sections obtained for a = 0.1 and a =0.2 by solvinq problem 3 were virtually identical 
to 
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sections 1 and 2 in Fig.4 (they have K =<6.9 and K = 79.2, respectively): 
We would like to acknowledge the useful comments of G.Yu. Stepanov and N.B. Il'inskii. 
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